361 CALCULUS

GRADE:	11 and 12	
LEVEL:	Honors	
CREDITS:	5/5	
PRE REQUISITE:		A grade of "B" or better in Pre Calculus 360 or department Chairperson recommendation
BASIC TEXT:		<u>Calculus Graphical, Numerical and Algebraic</u> Finney, Thomas, et al. Addison Wesley, 1995
SUPPLEMENTAL	READINGS:	None
REQUIRED MATH	ERIALS:	Writing Utensils, Notebook, Graphing Calculator

COURSE DESCRIPTION

This course is intended for capable math students who are planning careers in mathematics, science or engineering fields. It is a rigorous course which includes the study of limits, derivatives, integrals and their applications.

MISSION RELATED GOALS:

This class will provide the student with a variety of opportunities to demonstrate academic excellence and intellectual curiosity by communicating effectively, solving complex problems, and working with others toward a common goal.

STUDENT EXPECTATIONS FOR LEARNING ADDRESSED:

Students will be afforded opportunities to apply mathematical concepts to real-world applications. A variety of teaching methods will be used to foster an environment that promotes self-confidence and respect for others throughout the school and global community.

GENERAL PERFORMANCE OBJECTIVES:

The student will be able to:

- 1. Gain a solid foundation in the study of elementary functions;
- 2. Develop techniques in differential and integral calculus;
- 3. Apply the techniques acquired to problem-solving strategies in a variety of situations;
- 4. Connect and integrate the calculus to real world situations;
- 5. Use technology to develop concepts and investigate theory;

6. Benefit from on going review and self-evaluation

MASSACHUSETTS FRAMEWORK STRANDS:

This course goes beyond the frameworks set by the state. All students will have already completed each strand as a pre-requisite for this course.

CURRICULUM FRAMEWORK LEARNING STANDARDS:

This course goes beyond the frameworks set by the state. All students will have already completed each strand as a pre-requisite for this course.

UNITS AND THEMES:

- I. Introduction Review (8 days)
- II. Limits (8 days)
- III. The Derivative (10 days)
- V. Application of Derivatives (14 days)
- V. Integral Calculus (14 Days)
- VI. Applications of Definite Integrals (12 days)
- VII Transcendental Functions (10 days)
- VIII Review, Mid-Term Finals (4 days)

COURSE OUTLINE:

I. Introduction – Review (8 days)

- A. Linear Functions
- B. Geometric Transformations of Graphs
- C. Trigonometry Topics

II. Limits (8 days)

- A. Intuitive Concept of a Limit
- B. Continuity
- C. Algebraic Limits
- D. Trigonometric Limits
- E. Limits Involving Infinity

III. The Derivative (10 days)

- A. Average Rate of Change of a Function
- B. Definition of Derivative
- C. Differentiation Rules
- D. Applications Involving Velocity
- E. Implicit Differentiation
- F. Tangent Line Approximations (Linearization)

IV. Application of Derivatives (14 days)

- A. Maxima, Minima and the Mean Value Theorem
- B. First and Second Derivative Tests
- C. Optimization
- D. Rational Functions
- E. Radical and Transcendental Functions
- F. Related Rates of Change
- G. Mathematical Modeling and Anti-derivatives

V. Integral Calculus (14 Days)

- A. Area Using Rectangle Approximation Methods
- B. Definite Integrals
- C. Anti-derivatives
- D. The Fundamental Theorem of Calculus
- E. Solving Initial Value Problems using Indefinite Integrals
- F. Substitution Method for Integrals
- G. Approximation Methods (Trapezoid Rule)

VI. Applications of Definite Integrals (12 days)

- A. Area Between Curves
- B. Volumes using Disks
- C. Volumes using Washers (Horizontal)

VII Transcendental Functions (10 days)

- A. The Natural Logarithm
- B. The Exponential Function
- C. Other Exponential and Logarithmic Functions
- D. Exponential Growth and Decay

VIII Review, Mid-Term Finals (4 days)

SUGGESTED INSTRUCTIONAL STRATEGIES:

- 1. Lecture
- 2. Written exercises
- 3. Group Work
- 4. Projects
- 5. Use of Manipulatives
- 6. Use of a Variety of questioning techniques
- 7. Board Work
- 8. Calculator Activities
- 9. Student Presentations
- 10. A variety of assessment tools

SUGGESTED INTEGRATED ACTIVITIES:

- 1. Newton's Law of Cooling
- 2. Volumes of solids of revolution
- 3. Speed of falling objects
- 4. Study motion and how the derivative describes position, velocity, and acceleration
- 5. Exponential Growth and Decay
- 6. Investment Examples
- 7. Related rates

USE OF TOOLS/TECHNOLOGY

- 1. Graphing calculators
- 2. Computer Generated solids of revolution
- 3. Multiple overhead transparencies

ASSESSMENT TECHNIQUES

- 1. Tests
- 2. Quizzes
- 3. Partner Quizzes
- 4. Oral Presentation of Open Response Questions